

EXPLORESPACE TECH

NASA Lunar Surface Innovation Initiative: Ensuring a Cohesive, Executable Strategy for Technology International Astronautical Congress

STMD Deputy Associate Administrator: Prasun Desai

SPACE TECHNOLOGY PORTFOLIO

EARLY STAGE INNOVATION AND PARTNERSHIPS

- Early Stage Innovation
 - Space Tech Research Grants
 - Center Innovation Fund
 - Early Career Initiative
 - Prizes, Challenges & Crowdsourcing
 - NASA Innovation Advanced Concepts
- Technology Transfer

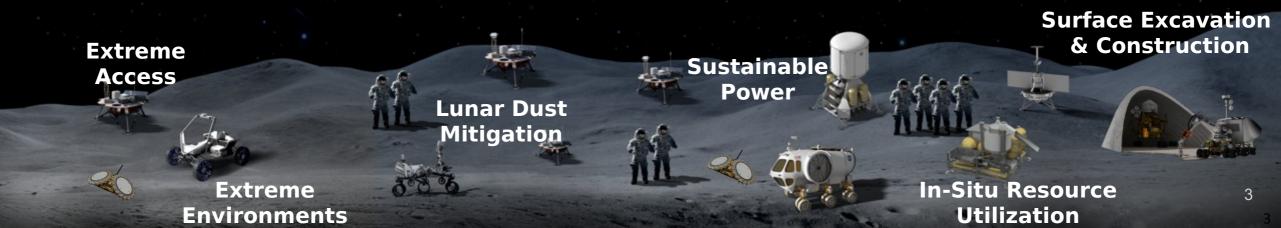
SBIR/STTR PROGRAMS

- Small Business Innovation Research
- Small Business Technology Transfer

TECHNOLOGY MATURATION

- Game Changing Development
- Lunar Surface Innovation Initiative

TECHNOLOGY DEMONSTRATION


- Technology Demonstration Missions
- Small Spacecraft Technology
- Flight Opportunities

Technology Drives Exploration H NID Technology Readiness Level Technology Readiness Level

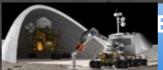
Lunar Surface Innovation Initiative (LSII)

LSII works across industry, academia and government through in-house efforts and partnerships to develop transformative capabilities for lunar surface exploration.

- Formulate and integrate technology maturation activities across the TRL pipeline and space technology programs
- Leverage innovative partnering and procurement approaches to expedite technology development
- Utilize early robotic lunar surface flight opportunities to inform key technology development
- Establish the Lunar Surface Innovation Consortium (LSIC)

LSII Capability Areas

Six capability areas focused on increasing technology readiness for lunar surface infrastructure


In-Situ Resource Utilization (ISRU)

The collection, processing & use of in-situ materials for production of consumables such as oxygen or propellant.

Extreme Environments

Enables operations across the full range of lunar surface conditions.

Excavation and Construction

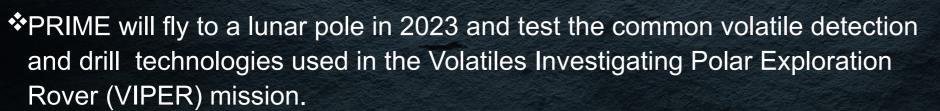
Enables autonomous excavation of in-situ materials to be used for construction of structures such as landing page, habitats, etc.

Technologies which can provide continuous power throughout the lunar day and night.

Lunar Surface Infrastructure

ExtremeAccess

Enables humans or robotic systems to access, navigate, assess, and explore previously inaccessible locations on the lunar surface.


Dust Mitigation

Active, passive, & operational technologies to remediate lunar dust hazards.

Polar Resources Ice Mining Experiment-1 (PRIME-1)

NASA

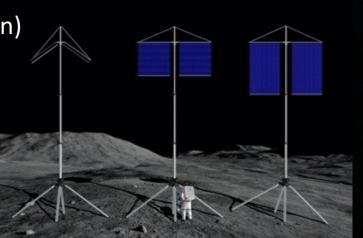
- ❖PRIME-1 will be the first instrument suite to assess the volatiles and drill for ice at a lunar pole tiles.
 - ➤ Will be integrated on to a commercial lunar lander via NASA's Commercial Lunar Payload Services (CLPS)
 - Consists of two high-TRL instruments a Mass Spectrometer observing lunar operations (MSolo) and The Regolith and Ice Drill for Exploring New Terrain (TRIDEN)

❖Industry Participants include Honeybee Robotics (TRIDENT), INFICON (MSolo), and Blue Sun (virtual machine language).

MSolo (Open Ion and Cross-Beam sensor) in test configuration

NASA

Lunar Vertical Solar Array Technology (VSAT)


Local power will be a critical component for a sustained presence on the lunar surface.

- An autonomous system capable of vertical array deployment of a mast up to 10 m on uneven terrain in order minimize shadowing in order to capture near-continuous sunlight at the lunar South pole.
- Designed for reliable, autonomous retraction and system mobility with minimal mass and packing volume.

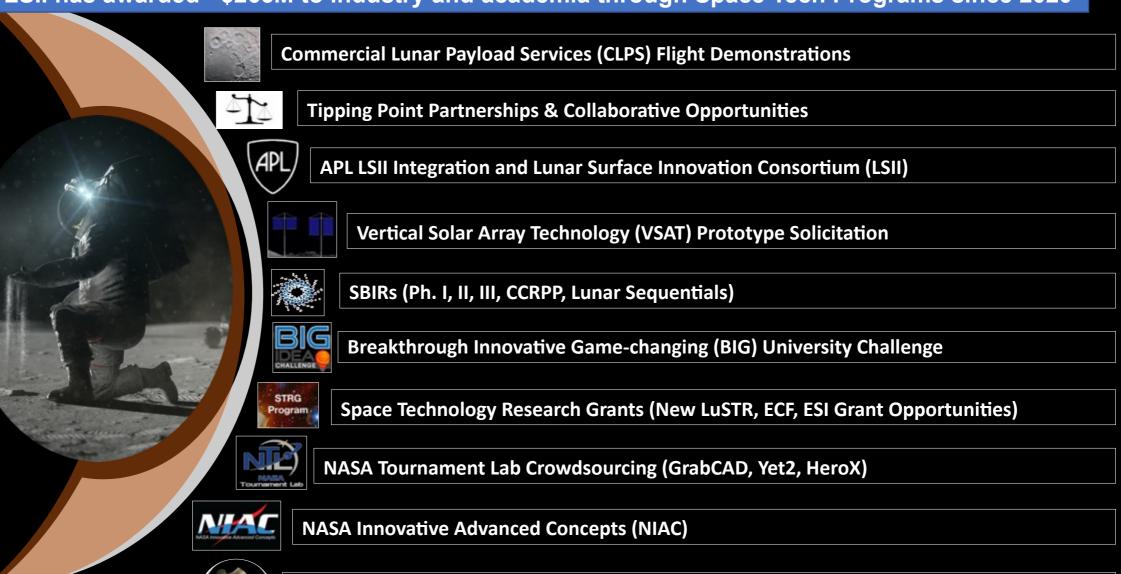
Parameters	Goals
Array Power	10 kW
Terrain Stability	15 incline with 10m mast
Mass Height	10 meters
Autonomous Deployment and Retraction	10 Deployment/Retraction Cycles in lunar gravity

In September 2022, three of these companies (Astrobotic, Honeybee Robotics, and Lockheed Martin) were selected to build prototypes and perform environmental testing.

Moon-to Mars Planetary Autonomous Construction Technology (MMPACT)

NASA

Structures will be need to provide protection of crew members, hardware and electronics on the surface.


- Develop, deliver, and demonstrate on-demand capabilities to protect crewmembers and hardware, and create infrastructure on the lunar surface via construction of landing pads, habitats, shelters, roadways, berms and blast shields using lunar regolith-based materials.
- Partners: ICON, SEArch+, USAF, Defense Innovation Unit, Texas Air National Guard

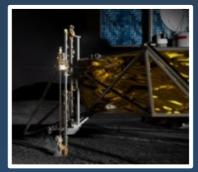
LSII - Developing capabilities through collaborations

LSII has awarded ~\$265M to industry and academia through Space Tech Programs since 2020

Centennial Challenges ('Watts on the Moon' & 'Break the Ice' Challenges)

8

Upcoming Lunar Surface Technology Demonstrations

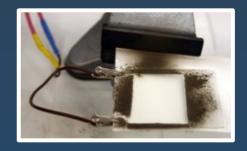

Lunar surface demonstrations, via the Commercial Lunar Payload Services (CLPS) initiative, are key opportunities to mature the key capabilities required for NASA and industry.

Astrobotic Peregine-1 (Astrobotic)

Astrobotic Terrain Relative Navigation (ATRN) – Tipping Point

CLPS PRIME (Intuitive Machines-2)

Deployable Lunar Hopper (STMD Tipping Point)



Polar Resources Ice-Mining Experiment (PRIME-1)

Nokia 4G/LTE Proximity Comms (STMD Tipping Point)

CLPS 19D (Firefly Aerospace)

Electrodynamic Dust Shield

Stereo CAmera for Lunar Plume Surface Studies (SCALPSS 1.1)

CLPS CP-11 (Intuitive Machines-3)

Cooperative Autonomous
Distributed Robotic Explorers
(CADRE)

Lunar Surface Innovation Consortium (LSIC)

Nationwide alliance of universities, commercial companies, non-profit research institutions, NASA, and Other Government Agencies with a vested interest in our nation's campaign to establish a sustained presence on the Moon.

LSIC Objectives include:

- Identifying lunar surface technology needs and assessing the readiness of relative systems and components
- Making recommendations for a cohesive, executable strategy for development and deployment of the technologies required for successful lunar surface exploration
- Providing a central resource for gathering information, analytical integration of lunar surface technology demonstration interfaces, and sharing of results.

Focus Groups (FG) are the primary means for consistent interaction with the LSIC Community. This includes:

- Establishing collaborative relationships among members via virtual monthly forums, quarterly virtual workshops, and LSIC member site visits
- Building community and developing talent
- Compiling member input and reporting outcomes and recommendations

Lunar Surface innovation Consortium Impacts....

LSIC has engaged a network of industry, academia and other government agencies from 50 states, D.C., Guam, Puerto Rico and 46 countries through Bi-annual meetings, Monthly LSII Capability Focus Group meetings and themed workshops.

Bi-annual Meetings

- Attended by over 2,000 people
- 54% at kickoff had not previously worked with NASA Space Tech

- Key takeaways and recommendations provided in Outcome Report

Focus Groups

- Virtual Monthly meetings
- Averaging 100 people per meeting
- 35 Subgroups defined and led by members
- Collaboration Space
- Provides feedback and recommendations to NASA

Nov 2-3

Organizations working toward one goal

- Monthly Newsletter
- Technology Assessments Reports
- Lunar Simulants Portal
- LSIC website

Upcoming Events

LSIC Fall Meeting @ University of Texas El Paso

